
Original Paper

Adaptive Behavior
21(6) 423–436
� The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1059712313497975
adb.sagepub.com

Extending sensorimotor contingency
theory: prediction, planning, and action
generation

Alexander Maye and Andreas K Engel

Abstract
One of the main assertions of sensorimotor contingency theory is that sensory experience is not generated by activating
an internal representation of the outside world through sensory signals, but corresponds to a mode of exploration and
hence is an active process. Perception and sensory awareness emerge from using the structure of changes in the sensory
input resulting from these exploratory actions, called sensorimotor contingencies (SMCs), for planning, reasoning, and
goal achievement. Using a previously developed computational model of SMCs we show how an artificial agent can plan
ahead with SMCs and use them for action guidance. Our main assumption is that SMCs are associated with a utility for
the agent, and that the agent selects actions that maximize this utility. We analyze the properties of the resulting actions
in a robot that is endowed with several sensory modalities and controlled by our model in a simple environment. The
results demonstrate that its actions avoid aversive events, and that it can achieve a low-level form of spatial awareness
that is resilient to the complete loss of a sensory modality.
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1 Introduction

In their seminal article O’Regan and Noë (2001) intro-
duce sensorimotor contingencies (SMCs) as the basis of
a sensorimotor account of conscious perception. The
theory comprises three important aspects. First, the dif-
ferent structure of changes in the signals arriving from
our eyes, ears, skin, and other sensory organs when we
move is why seeing, hearing, touching, etc., all feel dif-
ferent to us. In short, different types of SMCs give rise
to different qualities of sensory experience. Second,
vision, audition, touch, etc., correspond to domains of
knowledge of the respective SMCs that are exercised by
an agent as part of its habitual behavior. This ‘‘mastery
of SMCs’’ is what lets an agent perceive its environ-
ment and adapt its behavior accordingly. And third,
sensory awareness arises when SMCs are integrated
with planning, reasoning, and generation of behavior.

The theory is a radical departure from the classical
view that the brain constructs an internal representa-
tion of the outside world on which higher cognitive
processes such as memorizing, reasoning, and planning
operate. Explanations of mechanisms for the construc-
tion of internal representations from sensory data are
facing not only technical, but also conceptual prob-
lems. O’Regan and Noë (2001) mention the problem of

the different perceptual qualities of the senses: Why
does seeing feel different from hearing and touching?
Another problem concerns the perceived geometric
properties of objects: how can they be stable despite
the curvature of the retina and the cortical magnifica-
tion factor? Why is the visual field at the position of
the blind spot not ‘‘empty’’?

Most of these problems percolate into robot control
architectures that rely on an internal representation of
the environment. The impressive progress in computer
vision and other recognition methods notwithstanding,
reliable state estimation in general is possible for very
artificial and highly controlled environments only. This
has a major impact on all methods that require infor-
mation about the state of the environment, in particu-
lar on planning and action selection. Probabilistic
approaches such as partially observable Markov deci-
sion processes (POMDPs) (Kaelbling, Littman, &
Cassandra, 1998) address this problem, but suffer from
a computational complexity that calls for the
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development of various approximations. One of the
main virtues of sensorimotor contingency theory
(SMCT) is that it eliminates the need for internal repre-
sentations to explain perception. It considers the envi-
ronment as its own best representation which can be
sampled by the agent through acting. Robot control
architectures implementing the core ideas of SMCT
therefore allow us to expect better performance and
higher adaptivity.

While SMCT presents an intuitive apprehension of
these contingencies, their mastery, and integration with
high-level cognitive functions, things become less clear
when attempting to ground SMCT in the mechanisms
of biological or artificial agents. Then answers to ques-
tions such as what structures should be considered in
the changes of sensory signals and how to extract them,
how to explore huge or even infinite action spaces, how
to memorize knowledge of SMCs, and many others
have to be found. This article proposes answers to some
of these questions and elucidates conceptual conse-
quences for SMCT resulting from an attempt to control
an artificial agent by principles of this theory.

For the development of a robot control architecture
on the basis of SMCT one of the most imminent ques-
tions is how SMCs can be used to generate actions.
This question at first seems to lie beyond the core idea
of SMCT because the concept is not restricted to spe-
cific types of actions or action sequences. But precisely
the way an agent selects actions makes it ‘‘tuned’’ to
those SMCs that govern its purpose or habitual setting
and, hence, determines the degree to which this agent
can perceive its environment. Another reason for the
importance of action generation results from the double
function that actions have in a SMC-controlled agent:
Together with the sensory input they constitute percep-
tual experience, and they achieve goals. A separation of
actions with respect to these two functions seems con-
ceptually awkward; therefore, we aspire to develop a
model of action generation that considers perception
and goal achievement in an integrated manner. We con-
sider concepts for the generation of action from knowl-
edge of SMCs as a straightforward extension of SMCT.

An action is the factual outcome of a decision made
by the agent between alternative behaviors so that the
likelihood of achieving a goal is maximized. Our con-
ception of the term ‘‘action’’ therefore includes the
notion of goal-directedness (McGann, 2007). We con-
sider actions from a normative perspective that evalu-
ates the outcomes by a fitness metric or norm (Seth,
2007). This norm is constituted by the aptness of differ-
ent behaviors, or potential actions, for achieving a goal
and the fact that actions can succeed or fail. It is the
basis for the operation of decision processes. The nor-
mative dimension sets actions apart from mere
behavior.

SMCT seems to be particularly well-suited as a
framework for the development of robot control

architectures because SMCs can be seen technically as
forward models that predict the expected sensory
changes given a certain set of movements. Knowledge
of SMCs allows an agent to simulate potential out-
comes of behavioral alternatives. Thus prediction and
planning are covered by the theory. What is missing,
though, is an account for selecting between behavioral
alternatives. We propose that the selection be based on
the expected utility (Howard, 1977) of the SMCs
involved in an action. The expected utility of an action
is compounded by the utilities of the individual move-
ments that constitute a behavior. These utilities reflect
the benefit of the respective SMCs for the agent, and
they can be related to physical or mental conditions.
SMCs involving much energy, aversive sensory signals,
or pain are examples with low utility; reliable predict-
ability of or substantial experience with SMCs could
have a high utility for the agent. SMCs also can have
neutral utility. The utilities we use here concern only
the physical conditions of the robot.

Apart from a method for choosing between alterna-
tive actions, our approach to ground SMCT in an arti-
ficial agent comprises two other components: a
computational model of SMCs, and an algorithm for
predicting future sensorimotor events.1 We build on a
previously developed computational model of SMCs
that we employed in a number of studies using different
robotic embodiments (Maye & Engel, 2011; Hoffmann,
Schmidt, Pfeifer, Engel, & Maye, 2012). We extended
the original notion of SMCs to time scales beyond
immediate interactions with objects and consider them
as the basis for goal-directed action in biological agents
(Maye & Engel, 2012a). We call the respective SMCs
intention-related SMCs and refer to all three types of
SMCs collectively as extended SMCs or eSMCs hence-
forth. Recently we presented a method for prediction
and planning with eSMCs (Maye & Engel, 2012b). It
uses forward chaining of eSMCs and yields estimates
of the reliability of the prediction and likelihood of
occurrence.

The full model is implemented on a robot that roams
a simple, rectangular environment. The robot’s goal is
to move without collisions while minimizing power
consumption and acceleration. We simulate a signifi-
cant inertia in the robot’s locomotion, so that planning
ahead is required in order to avoid collisions. We ana-
lyze the behavior after the robot has gathered substan-
tial knowledge of eSMCs and study responses to the
loss of a sensory modality.

2 Background

2.1 Action generation in biological agents

When devising an action selection method for artificial
agents, it may be helpful to look at how natural action
selection works. Routine tasks such as preparing coffee
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or tea seem to be the result of the execution of discrete
subtasks which in turn are composed of atomic or uni-
tary actions. Support for this view comes from model-
ing studies of human motor control which suggest
event-driven intermittent control as a more suitable
framework to explain human action generation than
continuous control (Gawthrop, Loram, Lakie, &
Gollee, 2011). Human head movements, for example,
are composed of small submovements which are strung
together in a way that minimizes jerk (Chen, Lee,
Fukushima, & Fukushima, 2012). This property is
desirable for robot movements also as it can reduce the
wear and tear as well as the energy consumption. In
our approach jerk is a component of the utility func-
tion which governs learning in the robot.

Although routine tasks appear to be structured hier-
archically, the neuronal circuits that control the task
execution need not have a hierarchical structure as well.
What is more important is that the temporal or task
context be taken into account to an extent that allows
us to recognize conditions that uniquely characterize
the task. Botvinick (2007) presented a computational
account of this view in which the mapping between per-
ceptual inputs to motor outputs is modulated by inter-
nal representations of task-relevant information.

Like SMCT, the affordance competition hypothesis
(Cisek, 2007) rejects the view that the brain constructs
a representation of the world which is used for comput-
ing and executing an action plan. It suggests instead
that the brain’s sensory processing serves the prepara-
tion of several potential actions in parallel that are
afforded by the current context. These potential actions
compete against each other. The competition is biased
by accumulating sensory information about the aptness
of different actions and by top-down information. This
framework is supported by an elegant reinterpretation
of neurophysiological data on action-related brain
activity (Cisek & Kalaska, 2010). Potential actions are
prepared by loops through the basal ganglia, the thala-
mus, and the cortex, while neurotransmitters, in partic-
ular dopamine, modulate the competition (Bolado-
Gomez & Gurney, 2013). For resolving the competition
when several potential actions promise a similar bene-
fit, compromise strategies may be useful (Crabbe,
2007). The competition is biased by knowledge about
previous outcomes of the potential actions. Adaptation
of theses biases to the value that the outcomes of differ-
ent actions have for the agent can be described by rein-
forcement learning (RL; see below). The question of
whether the precise role of the elements in the striatal–
thalamo–cortical loops is best described by action selec-
tion or RL is controversial (Seo, Lee, & Averbeck,
2012). Expected value theories explain action selection
in humans and many animals by a roughly multiplica-
tive interaction between the value that the outcome of
an action has for the agent and the expectation that the
outcome occurs. Motivation is another factor that

affects action selection. A thorough analysis of the
main motivations that drive human behavior, such as
hunger, sex, fear, power, is given by Schneider and
Schmalt (1994).

2.2 Action generation in robots

The concept of affordances (Gibson, 1979) shares the
idea with SMCT that humans can perceive the environ-
ment without generating an internal representation.
Pioneering work to employ the affordance concept for
robot control has been done by Sahin, Cakmak, Dogar,
Ugur, and Ücoluk (2007). As our work is a similar
endeavor for SMCT, similar problems had to be solved.
The methods for generating multi-step predictions
about the sensory outcomes of different actions and
using them to achieve goals described by Ugur, Oztop,
and Sahin (2009) parallel the methods we develop here.
These predictions are translated into sequences of pri-
mitive behaviors, which leads to goal-oriented actions
such as traversing, approaching, and avoiding (Dogar,
Ugur, Sahin, & Cakmak 2008, Ugur, Sahin, & Oztop
2009). Blending movements in addition to sequencing
them, as suggested in Dogur et al. (2008), would be an
interesting extension for our approach. Basic move-
ments can be modulated by a free parameter which con-
trols the angle in a hand rotation or the distance of a
pushing action for example (Ugur, Oztop, & Sahin,
2011).

Our approach for action generation from knowledge
of eSMCs takes some ideas from RL (Sutton & Barto,
1998). Models for RL assume that the agent makes
transitions between states of the environment through
actions and that these transitions are associated with
an immediate reward. The goal of the agent is to maxi-
mize the cumulative reward by taking actions in an
appropriate sequence. The rules for state transitions
and rewards are mostly stochastic. Maximizing the
long-term reward of an agent requires that the future
rewards be taken into account. The combinatorial
explosion when attempting an exhaustive search over
all possible action sequences can be avoided by approx-
imate methods such as value or policy iteration (Russel
& Norvig, 2003). RL methods can be applied for action
generation in a SMCT framework as well. The main
difference is that the reward maximization is not per-
formed over transitions between states of the environ-
ment but over the agent’s sensorimotor context, i.e.
eSMCs.

The model of eSMCs we present in this article shares
its basic entities, pairs of movements and ensuing sen-
sory observations, with predictive state representations
(PSRs) (Littman, Sutton, & Singh, 2002). PSRs con-
sider sequences of these action–observation pairs as
tests. If the actions of a test were executed and would
yield the corresponding observations in order, the test is
said to succeed. Knowing the success probabilities for
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all possible tests corresponds to knowing the current
state of the environment. These probabilities are con-
tinuously updated as the agent executes actions and
receives sensory feedback. Instead of considering all
possible tests, PSRs are concerned with a minimal set of
core test that provide sufficient information to predict
the outcome of all possible tests. The discovery of such
core tests as well as the rules for updating test probabil-
ities are two difficulties that seem to hamper the appli-
cation of PSRs in real-world scenarios. Planning can be
implemented by considering rewards as additional
observations and then apply RL methods on the set of
tests in order to select optimal movement sequences
(James, Singh, & Littman, 2004). Boots, Siddiqi, and
Gordon (2011) used a PSR for path planning in a sim-
ple simulated environment.

Two studies using RL address an experimental sce-
nario that is similar to the one we use here. The TD(l)
learning rule is employed by Modayil, White, and
Sutton (2012) to predict the near future of the robot
with regard to sensory events. They use the term ‘‘next-
ing’’ to describe the process of making multiple short-
term predictions about upcoming sensory input for a
potentially large number of sensory channels. Without
making explicit references to SMCT, the authors recog-
nize that the ability to make this kind of predictions
‘‘. is to be aware of one’s world in a significant way’’.
While the idea of the study and the experimental setup
are very similar to what we present here, our approach
diverges in that it uses predictions to decide on the next
actions to take instead of following a fixed action selec-
tion schema.

The ability to predict the time until hitting an obsta-
cle or the time it takes to stop or reverse movement
direction are eminent functions for avoiding collisions
under inertial locomotion. The Horde architecture
(Sutton et al., 2011) addresses these issues by a number
of RL processes, called demons, that each approximate
a generalized value function (GVF). These GVFs reflect
partial knowledge about the agent’s interaction with
the environment. Using the GQ(l) algorithm, the indi-
vidual value functions are learned even when the agent
does not actually perform the corresponding behavior,
i.e. during off-policy episodes. GVFs represent the
agent’s sensorimotor knowledge as a mapping from a
sensory state and an action to a reward that is expected
if the action were executed in the respective state.

What distinguishes all of these studies from our
approach is that perception is still done in the classic
way by considering the sensory information in isola-
tion. In our approach the agent’s state will not only
comprise sensory information, but also the actions that
cause these sensor data as well as a recent history of
actions and sensory observations gathered during inter-
action with the environment. Taking actions into
account has been shown to significantly improve the
reliability of recognizing perceptual states (Hoffmann

et al., 2012; Ribes, Cerquides, Demiris, & Mantaras,
2012).

2.3 Computational models of eSMCs

The fundamental problems of what to select and how
can be avoided if behavior is considered as directly
resulting from interacting sensorimotor processes
(Seth, 2007). In agreement with the tenet of SMCT that
seeing is a way of acting, the study by Choe, Yang, and
Eng (2007) is an attempt to model the perception of dif-
ferent visual stimuli through specific patterns of gaze
trajectories. This is achieved by learning to move the
camera in a way that maximally stabilizes a set of
visual features. The study by Fine, Di Paolo, and
Izquierdo (2007) presents an artificial agent that exhi-
bits phototaxis that is robust against flipping its only
light sensor between the front and the back side. A
genetic algorithm is used to find a set of weights and
time constants that generate optimal behavior. The
models described by Pfeifer and Scheier (1997) use an
extended Braitenberg architecture to store SMCs in a
network of weighted connections between sensors and
motors. The robot learns to distinguish different object
sizes and to approach small and avoid large objects.

Hebbian learning in an artificial neural network con-
necting sensors and motors is used by Bovet and Pfeifer
(2005) for learning sensorimotor correlations. This
leads to object approaching behavior and, in conjunc-
tion with a reward signal, to a modulation of the beha-
vior by a cue. Hebbian learning can capture only
simultaneous information; therefore, it cannot be used
for associating a cue with a delayed reward directly.
Instead of employing some form of memory, which is
what most architectures for delayed reward learning
do, the memory function is loaded off to the environ-
ment, which has to be assumed to be stationary for that
matter. In our interpretation of SMCT, however,
eSMCs are a form of memory, corresponding to the
contents of procedural memory. Having memory is
therefore deemed to be a necessary condition for exer-
cising eSMCs.

Like in our study, a Markov model is used by Ribes
et al. (2012) to predict future sensory events from previ-
ous actions and sensory observations. It generates long-
term prediction about optical flow using Gaussian mix-
ture models which learned the conditional probabilities
of observing a future optical flow given a previous flow
and an action. Interestingly it was found that the pre-
diction results degraded when the information about
the action was dropped. A potential application of the
approach could be the anticipation of dangerous events
such as collisions. Our work extends this idea by taking
longer sequences of actions and sensory observations
into account and providing a way to employ the learned
probability distributions for prediction and action
planning.
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The system described by Möller and Schenck (2008)
is, to the best of the authors’ knowledge, the only one
that actively uses SMCs for planning movements. The
approach employs artificial neural networks for learn-
ing forward and backward models of changes in the
sensory signals depending on the robot’s actions. These
models are used to predict the outcomes of potential
behaviors, which is used to distinguish between dead
ends and corridors in a robot navigation task. The note-
worthy point is that this recognition is done without
learning corresponding sensory representations of the
two situations. While this property is a main target also
in our method, we follow a different approach. As will
be detailed below, our system builds on an algorithm
that recombines eSMCs in different ways to make pre-
dictions about future sensorimotor events instead of
using an inverse model to predict actions given a sen-
sory input.

Schema learning (Drescher, 1991; Holmes & Isbell
Jr., 2005) is another approach that implements ideas of
SMCT. A schema is a set of rules that describe the sen-
sory outcomes of actions conditional on the context
given by the current sensory input. This can be consid-
ered as a set of SMCs in its most basic form.
Dependencies across longer time scales can be modeled
by virtual sensors which reflect hidden states of the
environment not directly perceived by the sensors. Our
model, in comparison, is more rigorous in implement-
ing SMCT as the context is given by sensory inputs and
the movements that caused it, and no representations
of the state of the environment other than sequences of
movements and sensory observations are used.

3 Methods

3.1 Motor–observation pairs

Values from N different sensory channels of the robot
are combined in a sensory vector ½o1 . . . oN �. In the same
manner M different effector channels (e.g. for control-
ling forward/backward drive, left/right drive, switching
lights on/off) are aggregated into a motor vector
½m1 . . . mM �. The basic element in our model of eSMCs
is a movement and the sensory signals resulting from
its execution, and we represent this by the concatena-
tion of the motor and sensory vectors
mo ¼ ½m1 . . . mM o1 . . . oN �.

3.2 eSMCs as sequences of motor–observation
pairs

We model eSMCs by concatenating motor–observation
pairs over histories of different lengths up to maximum
of H ¼ 20 time steps. The utility of an eSMC is com-
puted from the sensor readings during the most recent
time step by

u ¼�bumper �
X

motors

0:2motoravg �
X

motors

0:2motorinc

�0:2max
x;y;z
ðjacceljÞ:

The bumper signal is a binary value that indicates a
collision. The three motor currents are sampled five
times during the execution of a motor command, subse-
quently the readings are averaged for each of the three
motors (motoravg). The difference of the average over
the last two and the first two samples (motorinc) yields a
signal for changing motor load during the time step.
Changing movement direction or beginning to push
against an obstacle causes strong changes in motor
load. Finally accel indicates acceleration peaks, caused
by a collision for example. The utility is always less
than zero and the robot shall try to find a behavior that
makes it least ‘‘negative’’.

We store sequences of SMCs experienced by the
robot in a tree data structure (see Figure 1). The tree
has a fixed maximum depth H which defines the maxi-
mum context length that the agent can take into
account. Each node in the tree is indexed by its vector
mo and has a utility u and a count c associated. These
two parameters hold the average utility and the number
of occurrences of the eSMC defined by the path leading
to this node.

Assume that we have experienced a particular eSMC
in the last time step t � 1. Then on each level in the tree
the respective node with the matching index was acti-
vated. When a new motor–observation pair is available
in the current time step t, all successors of all activated
nodes from the previous time step are searched for
moðtÞ. If a match was found, the utility associated with
the current motor–observation pair is updated by
Q-learning with a learning rate of 0.2 and a discount
factor of 0. Otherwise a new node is created as a suc-
cessor of the activated node with the index given by
moðtÞ. The utility of the node is initialized to the

Figure 1. Tree representation of eSMCs. Each node stores a
counter c for occurrences of the respective eSMC and its utility
u. For example, the right-most terminal node stores
cðmo3mo2mo1Þ and uðmo3mo2mo1Þ.
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current utility and the counter to 1. Finally the
retrieved or created nodes become the active nodes and
the procedure repeats in the next time step with
moðt + 1Þ.

The counts in the nodes allow us to compute the
probability of experiencing a movement–observation
pair moðt+ 1Þ conditional on a history of previous
such pairs k ¼ ½moðtÞ . . . moðt � H + 1Þ� by dividing the
count of the specific child node by the sum of counts of
all child nodes of the node that represents the history k:

Pðmoðt+ 1ÞjkÞ ¼ cðmoðt+ 1ÞjkÞP
i2childnodesðkÞ cðijkÞ

This equation makes the Markov property of our
model explicit.

3.3 Using the tree of SMCs to make predictions

After the tree has been built from the sensorimotor
experiences of the agent, it can be used to generate pre-
dictions about upcoming sensorimotor events. At each
activated node the successors are a memory of what the
agent experienced in the next time step when it was in
the situation characterized by the set of activated nodes
previously. The paths to each of these successors can
be used to search the tree for longer predictions in an
iterative manner (Maye & Engel, 2012b). The result of
this iterative process is a set of possible SMC sequences
up to a fixed prediction horizon Hp. Each sequence
consists of motor–observation pairs moðtÞ, t ¼ 1 . . . Hp,
with their corresponding utilities umoðtÞ and counters
cmoðtÞ. In addition we assign to each pair a reliability
value rmoðtÞ that reflects the length of the path that was
matched when moðtÞ was found as a successor node.
Longer paths correspond to a longer context taken into
account for the generation of this event in the sequence,
resulting in a higher reliability. We would like to use
this reliability to weight predicted alternative move-
ment sequences.

From the sequence with the highest expected utility
we will execute only the first movement, i.e. the motor
component of moð1Þ. Therefore, we group all predicted
sequences by their first element so that all members of
a group (denoted by the set Sx) have the same motor
vector x in their moð1Þ. Our goal is to combine the utili-
ties of all of the sequences in each group and select the
group with the highest expected utility. To this end we
keep in each group x only the sequences y that have
maximal reliability r̂x ¼ max

P
t rxyðtÞ. Next we deter-

mine for each sequence y in group x the minimum
count ĉxy ¼ mint cxyðtÞ as another indicator of reliabil-
ity. If any motor–observation pair in the sequence has
been encountered only a few times, the utility of this
sequence should be considered less reliable. The utility
of a movement sequence results from the utilities

associated with its individual eSMCs and is computed
as ûxy ¼ 1=Hp

P
t uxyðtÞ=cxyðtÞ.

To convert ĉ into a weight for each sequence in a
group x, we normalize it by the sum of all ĉ in that
group: wc

xy ¼ ĉxy=
P

h2Sx
ĉxh. The reliability value r̂x is

converted into a second weight wr
x by normalizing with

respect to the sum of the reliabilities of all groups A,
wr

x ¼ r̂x=
P

m2A r̂m.
In principle, we could now use a combination of wr

x

and wc
xy to weight the utilities ûxy and select the best

action. But we would like to use the weighted utilities
as probabilities for executing the best action;2 there-
fore, a proper normalization is needed. We combine
the two weights into

wcr
xy ¼ wc

xywr
x=
P

m2A wc
mywr

m

and compute the expected utility of an action that starts
with movement x as hûxi ¼

P
y2Sx

wcr
xyûxy. Finally the

movement to be executed in the next time step is chosen
according to the probability pðxÞ ¼ hûxi.

The method for predicting sensorimotor events from
known eSMCs is used to generate predictions for as
many movement sequences as possible up to a fixed
planning horizon. This does not involve all possible
movement sequences, but only those that can be derived
from the known eSMCs. The combinatorial explosion
for longer prediction horizons is therefore kept at bay.

3.4 Robotic hardware and experimental setup

In order to investigate the performance of our model
under real-world conditions, it was implemented to
control a Robotino� robot. Figure 2 shows an outline
of the setup. Three omni-wheels provide holonomic
motion, but only movements to four fixed directions
(forward, backward, left, right) were used. Slip on the
ground, drift of the motors, and interactions with the

Figure 2. Schema of the robot and the location of its sensors:
IR1–IR9, infrared distance sensors; M1–M3, motors; bumper
(collision detector); accelerometers not shown. IR1 is at the
front. The rectangular environment is drawn to scale.
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walls changed the robot’s orientation in the confine-
ment in an uncontrollable way. This complicated the
task for the robot because it had to learn eSMCs for
the various orientations encountered during the experi-
ments. When oriented along the long axis of the rectan-
gular box, for example, the frontal and rear distance
sensors were sensing the respective walls in a mutually
exclusive way. When oriented along the short axis
though, the front and rear walls were in the range of
both distance sensors simultaneously. This feature
allowed the robot to deduce its orientation from the set
of activated eSMCs and to exercise the corresponding
actions. We preferred this conceptually clean treatment
of the slip problem because it addresses an issue that
biological agents are facing as well. In a proper robotic
application measures to compensate uncontrolled
orientation changes would have been taken.

To make the ability for planning movements and
predicting sensory events a required function in the
eSMCs-based control architecture, we modified the
way how movement commands are usually executed on
robotic hardware. The step motors of the holonomic
drive are so strong that they dominate the plant
dynamic; hence, all motor commands take effect almost
immediately. Biological motion, in contrast, exhibits a
noticeable amount of inertia. This causes a delay
between the time when a motor command is issued and
the time it takes effect, thus requiring short-term pre-
dictions about the temporal development of action
effects. We simulated this inertia by limiting the maxi-
mum acceleration of the robot drive. If the current
speed does not match the target speed, it is increased or
decreased (depending of the signs of current and target
speeds) in the next time step; otherwise it is kept
constant:

vðt+ 1Þ ¼ vðtÞ if vðtÞ ¼ vtarget

vðtÞ6Dv otherwise

�

The fixed amount of speed change Dv is chosen so that
a reversal of movement direction, required for avoiding
a collision, takes two time steps to take effect (Figure

3). Apart from forcing the robot to have predictions
about the sensory consequences of different movement
sequences, the simulated inertial movements have
advantages regarding the slip, battery life time, and
wear-and-tear of the drive.

The sensory equipment comprises nine distance sen-
sors around the robot’s periphery, a collision detector,
accelerometers along three orthogonal axes, and the
instantaneous current consumption of the three motors.
Distance readings are quantized to three values roughly
corresponding to the conditions when an object is
within 20 cm range, within 70 cm range, or nothing is
in range. Likewise the motor current readings are trans-
formed into three distinct values for low, intermediate,
and high current consumption. Accelerations could be
positive or negative for each axis, and they are quan-
tized into five values (two positive, two negative, and
no acceleration). The collision detector yields a binary
value which signals if the periphery of the robot is in
contact with an object, but provides no information
about the location of this contact point.

4 Results

4.1 Learning SMCs and generating predictions

Initially the robot neither has any sensorimotor knowl-
edge nor is endowed with any hard-wired behavioral
patterns (e.g. reflexes for obstacle avoidance, light fol-
lowing). It chooses actions mostly at random. The only
heuristic is that if the last action resulted in a high util-
ity, it is likely selected in the next time step again.

Figure 4 compares trajectories of two runs at the
beginning of learning and after substantial exploration
of eSMCs. Without any sensorimotor knowledge (left
plot), the robot frequently bumps into a wall and
always spends some time to find out how to escape.
Continued pushing against the wall upon a collision
sometimes changed the robot’s orientation. Therefore,
the robot had to explore eSMCs and useful behaviors
for all possible orientations. Without having a way to
intentionally change its orientation, the robot still can
sense it through the activated eSMCs.

With a substantial body of learned eSMCs (right
plot in Figure 4) collisions become rare, thereby lower-
ing the frequency of orientation changes. The robot
mainly moves straight back and forth along the long
axis of the box with U-shaped or circular turns.

While eSMC knowledge accumulates, predictions
become available in more and more contexts, and they
extend over more and more possible actions. The beha-
vior is adapted on the basis of these predictions; conse-
quently, the robot’s ability to manage its environment
is characterized by the progress in predictability. After
about 2 minutes of learning time, predictions for all
four possible actions are available in most situations
(Figure 5). The predictions concern different movement

Figure 3. Driving the robot with simulated inertial
movements, a request to reverse the movement direction at
time t takes effect only two time steps later (solid line). The
regular motor control would thrust the robot immediately in
the opposite direction (dashed line).
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sequences and possible variations in the associated sen-
sory data. The more predictions are available, the more
reliable the expected outcome can be determined, and
the more complete the space of behavioral alternatives
can be sampled.

In Figure 6 we compare the number of eSMCs in
two sensorimotor spaces of different dimensions. When
all sensors are considered, the number of eSMCs of his-
tory length 6 and longer corresponds roughly to the
number of learning epochs. This means that these

rather specific time-extended (.3s) contexts are experi-
enced only a few times. One may conjecture that the
reliability of these eSMCs for generating predictions
may be low since they lack statistical power owing to
the sparse sampling. At the same time a long history
establishes a unique context that is less liable to aliasing
by similar situations. This allows us to expect similar
consequences of the behaviors that were explored pre-
viously in this context provided that the environment is
deterministic and stable.
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Dropping sensory information from the nine dis-
tance sensors reduces the selectivity of the sensorimotor
context and hence increases the frequency of experien-
cing eSMCs of longer history.

4.2 Using predictions to optimize behavior

Forward chaining of eSMCs allows to generate predic-
tions about the sensory consequences of different move-
ment sequences. These predictions form a tree, with
movements as edges emanating from nodes that repre-
sent sensory data. Figure 7 shows a part of a prediction
tree after the robot has moved forward five times in a
row without a collision. The most frequently observed
distance configuration then is shown in the framed
panel. This configuration constitutes the current con-
text from that the prediction commences. The robot
has experience with three different movements in this
context, and the resulting distance configurations are
shown in the corresponding panels. The most fre-
quently taken movement was in forward direction.
Following the prediction tree along this branch shows
that an obstacle is expected to come into the range of
the frontal distance sensor IR1. Continuing the predic-
tion with the movements that were most frequently
chosen in the respective context results in a U-shaped
trajectory along which the robot first continues to
approach an obstacle at the front and then retracts.

To further illustrate the available knowledge about
potential outcomes of different behaviors, we analyzed
an alternative branch of the prediction tree. When the
robot continued to move forward for four steps from
the current position (instead of taking the U-turn after
two steps), the obstacle would come very close to the
robot’s frontal distance sensor, so that a collision
becomes inevitable (top left panel) even when switching
to leftward movement. Remember that it takes two
time steps for the movement direction to actually
change after issuing the respective motor command.

In this example only the distance sensors and the
collision detector are shown, but of course the predic-
tions comprise the complete sensorium of the robot.
Likewise only the most frequently chosen or most inter-
esting actions are shown. The complete prediction tree
contains several more movement sequences and sensor
data. Each context is also characterized by the expected
utility that is the basis for selecting actions. It is impor-
tant to note that the predictions shown in Figure 7 are
available while the robot is still in the current context.
Executed movements and the associated sensory
changes bring the robot in a new context; afterwards
the prediction tree is built anew on the basis of the cur-
rently exercised eSMCs.

The ability to predict alternative sensorimotor
sequences and their expected utility allows the robot to
select actions with the best expected outcome. What is
‘‘best’‘ for the robot is defined by the utility function u.
Since the robot was forced to move all of the time, the
global maximum of the utility function could not be
reached. Instead, the behavior was optimized locally in
the current context. The curves in Figure 8 show the
time course of the components of the utility function.
Before learning, i.e. without any eSMC knowledge, the
robot had not yet had the adverse experience of a colli-
sion and had no knowledge of how to avoid and escape
these situations. This resulted in frequent switches of
the movement direction upon collisions which entail
high motor currents and accelerations. Between colli-
sions the heuristic action selection allowed the robot to
experience the high utility of straight movements.

With sufficient sensorimotor knowledge, the robot
selects proper actions to escape collisions and keeps
moving in the same direction as long as possible
between the walls, reflected in the lower turning prob-
ability, motor currents, and accelerations. The experi-
ence of obstacles in its range sensors in the various
configurations featured by the environment enables it
to avoid most collisions in advance. They could not be
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perfectly avoided, though, because the resolution of the
distance features is quite low (only 2 levels: obstacle
far/close), leaving the robot without exact information
about its position relative to the obstacle. Approaching

a wall and avoiding a collision therefore has a stochas-
tic character for the robot. It would not reverse move-
ment direction well in advance, i.e. as soon as there is
something in range, for the detrimental effects of turns
on current consumption and acceleration.

With sensorimotor knowledge growing, the robot
adopted a collision avoidance behavior that we had not
foreseen. Instead of simply switching to the opposite
movement direction in front of an obstacle, it performed
U-turns whenever space was permitting. Figure 9 shows
several examples. These actions minimize accelerations.
That they are also optimal in terms of motor current
consumption, was not known in advance and was
revealed only by the robot physically exploring the con-
sequences of different behavioral options.

4.3 Resilience to sensor failure and dead
reckoning

In a previous study with one-dimensional movements
we have shown that the robot can learn the distance
between two obstacles and move back and forth
between them without collisions (Maye & Engel,
2012b). Importantly, no distal sensors, i.e. neither the
distance sensors nor the camera, were employed. After
a collision the robot had to memorize how many steps
it could move in the opposite direction before colliding
with the other obstacle.

Here we were interested in the question of whether
this dead reckoning capability also extends to the two-
dimensional scenario. We disabled the distance infor-
mation in the learned eSMCs and let the robot run for
another 8 minutes, this time with the information from
the distance sensors suppressed. The plots in Figure 8
compare the resulting behavior with the conditions
when distance sensors are used and when no sensori-
motor knowledge is available. Turning probability and
accelerations of the movements are similar to the con-
dition with working distance sensors and lower than at
the begin of learning eSMCs. In contrast, motor cur-
rents and collisions rate increase when distance sensors
are shut off, which indicates more frequent wall colli-
sions. Still both parameters are below the values
obtained during the initial learning period. This shows
that the residual knowledge allows to avoid several col-
lisions that would have happened if the robot had no
eSMCs knowledge. As shown in Figure 4, collisions at
the walls can change the robot’s orientation more or
less randomly, and without using distance sensors, it
could not become aware of the new orientation. This
makes dead reckoning very difficult, because not only
the position has to be estimated from the movements
since the last collision, but also the orientation has to
be deduced on the basis of the movements between the
last few collisions.

Figure 7. Part of the predictions available after the robot has
moved five times forward (framed panel). Line length represents
expected distance at the respective sensor, a flash symbolizes
expected collision. Filled polygons underneath the distance lines
are for better visualization of the spatial context only.
Predictions for other sensory channels are not shown. Arrows
represent movements, up is forward. Note that owing to the
simulated inertia, action effects can be seen only two time steps
later in the sensory predictions.

432 Adaptive Behavior 21(6)



5 Discussion

In this article we present an approach for using eSMCs
for prediction, planning, and the generation of beha-
vior. This may be an important contribution in at least
two aspects. First it corroborates or extends SMCT by
showing how an agent may actually make use of
eSMCs. Solely exploring the world and deducing the
sensorimotor laws is not enough for an agent to sur-
vive. Consider for example an agent that generates
movements randomly. It can observe the structure of
the sensorimotor interactions, and after some time, it
knows all about possible output–input relations. But it
does not use this knowledge in any way and conse-
quently has neither perception nor sensory awareness.
Compared with some of the Braitenberg-vehicle-like

approaches mentioned above or the missile guidance

system example in O’Regan and Noë (2001), our

approach can provide a considerable degree of delib-

eration to an agent. For generating predictions about

expected outcomes of possible actions in a particular

situation it does not have to actually be in this situa-

tion. It could just assume to be in this situation, and

prediction trees such as the one we analyzed in Figure

7 provide it with a kind of imagination of potential

episodes.
Second we hope to contribute to the growing num-

ber of robotic control architectures showing that

SMCT not only provides explanations for the origins

of perceptual qualities in biological agents, but can also

serve as a solid theoretical framework for controlling
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Figure 9. Four example trajectories of avoiding wall collisions. Black bar at the top represent the wall, dots mark time steps.

Maye and Engel 433



artificial agents capable of mastering the real world.
The complexity of the experimental scenario we study
here is at an intermediate level between the simplicity
of purely conceptual studies and the intricacies of
unrestricted natural environments. On one side, con-
ceptual studies are frequently done in simulation or in
highly idealized environments where all information is
machine readable. Using a physical robot which moves
in a small part of an otherwise natural environment in
our study demonstrates that the eSMC-based approach
offers an integrated and conceptual solution to several
‘‘classical’‘ low-level problems such as slip, sensor
noise, or action–effect delays and their variability,
which are solved individually in conventional architec-
tures. In our study the robot successfully learns to
move in a smooth, energy-efficient way and to escape
and avoid collisions. Distance sensor-based collision
avoidance is frequently implemented as a low-level,
reflex-like behavior by robot engineers; however, the
unexpected solution for avoiding collisions by U-turns
shows that giving the robot the opportunity to explore
its particular embodiment may yield results that out-
perform engineered solutions.

On the other side, robots for real-world applications
typically have more actions available, have more
degrees of freedom, and need to process sensory infor-
mation at a higher resolution than in the scenario of
this study. Thus the question arises of how the
approach scales with increasing complexity of the sce-
nario. For robots with low-dimensional sensor space
there seems to be no principled limitation of the
approach. Larger action repertoires obviously require
more time to explore, but this problem is common to
all control architectures and not specific for eSMCs-
based approaches. A structured exploration of these
high-dimensional action spaces is required. The heuris-
tic of continuing the last action if it was of high utility
turned out to be an efficient means to reduce the
amount of random action exploration and to speed up
learning. Other methods for structured action explora-
tion freeze some degrees of freedom in the beginning
and release them gradually while learning progresses
(Bernstein, 1967) or try to detect and exploit synergies
in high-dimensional actuators (Sporns & Edelman,
1993).

The memory requirements of our approach primar-
ily depend on the degree of regularity in the interac-
tions of the robot with its environment. Here we use a
non-parametric representation of eSMCs which may
become memory consumptive when these interactions
are noisy. In this case parametric representations may
have advantages in return for sacrificing the ability to
represent arbitrary sensorimotor dependencies.

Like the memory consumption, the runtime com-
plexity of the proposed method is completely depen-
dent on the complexity of the interactions between the
robot’s embodiment and the environment. A loose

upper bound for the time needed to look up an eSMCs
in the tree is OðhnÞ, but we observed that the average
time is much shorter for the following reasons. First
matches between eSMCs with the longest history length
h (20 in this study) occur very rarely. Our observation
is that the movement sequences alone, without consid-
ering the associated sensory observations, limit the
average matching length to about 10 time steps. Second
the number of child nodes n varies greatly with the con-
text size. The root node has the most children, about
5,000 per action. After the first level, the number of
child nodes decreases rapidly with every additional time
step considered for matching longer eSMCs because
the increasing context size limits the number of possible
movement–observation pairs that may follow. And
third the average number of child nodes n is fully deter-
mined by the degree of regularity of the sensorimotor
interactions between the robot and the environment. If
the sensory outcomes of an action are highly reliable, a
minimum number of nodes is required to store these
relations. The noisier the interactions become, the more
child nodes will be generated. The same consideration
applies when the eSMCs that are stored in the tree are
used to make predictions. Then the number of child
nodes determines the number of predictable
movement–observation sequences. The combinatorial
explosion when the prediction involves highly variable
eSMCs, which are characterized by a high number of
child nodes in the tree, can be curbed by limiting the
prediction depth, as we did in our approach, or by
stopping the search in subgraphs if an optimality criter-
ion cannot be met as in the work of Möller and
Schenck (2008).

We would like to point out that the representation
of eSMCs in a tree data structure is by no means the
only possibility and may be not even the optimal one.
Indeed we used a flat, associative memory in Maye and
Engel (2011) and we are currently working on a neural
network representation. The tree structure we describe
here was chosen because it is moderate in its memory
requirements (eSMCs from 21 h learning time have a
file size of about 160 MB) and allows us to look up
eSMCs and generate predictions in quasi-real-time
(\500 ms cycle time on an Intel Xeon 3.47 GHz proces-
sor, 2 cores used).

We do see a limitation of our approach though when
high-dimensional sensors such as cameras or laser range
finders will be used. Then methods for distinguishing
relevant from irrelevant information are required. For
example, the current approach would consider every
time an object is placed in front of a different back-
ground as a different context. This may be justified if
the context is behaviorally relevant. Yet if this is not the
case, starting to explore potential actions in each of
these contexts is prohibitive in terms of learning time.
Clearly a transfer of knowledge about the object to new
but irrelevant contexts is needed.
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In a footnote (no. 10, p. 971), O’Regan and Noë
(2001) touch on the question of machine awareness.
They consider an artificial agent aware to the extent
that it can plan and have rational behavior. In our
study the robot knows at all times the ‘‘what if’’ about
possible behaviors, and it uses this knowledge for select-
ing appropriate actions. Even under complete loss of
one sensory modality it still has some estimate of its
position and possible collision-free trajectories.

Our results may pave the way for ascribing some
minimal form of awareness to eSMCs-based robots
using the operational definition of O’Regan and Noë
(2001). Furthermore, the robot’s behavior in this set-
ting shows our notion of what it means to be tuned to
or have mastery of eSMCs.

The utility function used in this study combines the
different contributions, i.e. collision state, motor
currents, and accelerations, by a simple linear superpo-
sition. This may be appropriate for achieving the low-
level goals that we set here, but more complex scenarios
would certainly require a more sophisticated account
of utility of eSMCs. If several goals have to be met
simultaneously, for example, compromise strategies for
action selection should be considered (Crabbe, 2007).
Further, the terms of the utility function concern physi-
cal parameters of the robot’s embodiment only. It
adjusts its moment-to-moment behavior to satisfy these
physical needs. The utility function was built into the
system to protect the precious hardware, and it reflects
the experimenter’s vision of what sensible behaviors
would be. In order to plan and select more complex
actions, intrinsically generated utilities are imperative.
In addition to the physical needs of the agent these
intrinsically generated utilities would also take proper-
ties of the eSMC knowledge into account. The level of
exploration or degree of predictability would be two
examples for such intrinsically generated utilities. For
example, after avoiding a collision in the current set-
ting, the robot moves in a random direction, trying
only to minimize power consumption, until it gets close
to a wall and starts planning how to avoid the next col-
lision. If it would consider in addition a uniform level
of exploration between all places in its habitat as valu-
able, it could move on purpose to a less explored spot
and continue learning the eSMCs of that place. Models
of intrinsic motivations exist (e.g. those by Oudeyer
and Kaplan (2004) and Ugur, Dogar, Cakmak, and
Sahin (2007)), and we plan to accommodate these ideas
in the further development of our model.

Notes

1. Grounding SMCT in biological agents could be achieved
by spelling out the same three components in terms of

neurophysiological mechanisms. This is one of the targets

of a European collaborative project called eSMCs
(www.esmcs.eu).

2. In some situations even the best known action can have a
low utility, and this is an indication for exploring new
behaviors.
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G. (2007). To afford or not to afford: A new formalization
of affordances towards affordance based robot control.
Adaptive Behavior, 15(4), 447–472.

Schneider, K., & Schmalt, H. (1994).Motivation (2 ed.). Stutt-
gart: Verlag W. Kohlhammer.

Seo, M., Lee, E., & Averbeck, B. B. (2012). Action selection and
action value in frontal-striatal circuits. Neuron, 74(5), 947–60.

Seth, A. K. (2007). The ecology of action selection: insights
from artificial life. Philosophical Transactions of the Royal

Society B: Biological Sciences, 362(1485), 1545–58.
Sporns, O., & Edelman, G. M. (1993). Solving Bernstein’s

problem: a proposal for the development of coordinated
movement by selection. Child Development, 64(4), 960–
981.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press.
Sutton, R., Modayil, J., Delp, M., Degris, T., Pilarski, P.,

White, A., & Precup, D. (2011). Horde: A scalable real-
time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the 10th

International Conference on Autonomous Agents and Mul-

tiagent Systems (pp. 761–768).
Ugur, E., Dogar, M., Cakmak, M., & Sahin, E. (2007). Curi-

osity-driven learning of traversability affordance on a
mobile robot. In Development and Learning, 2007. ICDL

2007. IEEE 6th International Conference on (pp. 13–18).
Ugur, E., Oztop, E., & Sahin, E. (2009). Affordance learning

from range data for multi-step planning. In Proceedings of

the Ninth International Conference on Epigenetic Robotics:

Modeling Cognitive Development in Robotic Systems. (Vol.
146, pp. 177–184).

Ugur, E., Oztop, E., & Sahin, E. (2011). Going beyond the
perception of affordances: Learning how to actualize them
through behavioral parameters. In Robotics and Automa-

tion, 2011. ICRA 2011. IEEE International Conference on

(4768-4773).

Ugur, E., Sahin, E., & Oztop, E. (2009). Predicting future
object states using learned affordances. In Computer and

Information Sciences, 2009. ISCIS 2009. 24th International

Symposium on (pp. 415–419).

436 Adaptive Behavior 21(6)


